Enrique Ramírez de Arellano



Departamento de Matemáticas
Oficina 146
Av. Instituto Politécnico Nacional 2508
México, D.F., C.P. 07360
Apartado Postal 14-740,
México, D. F., C.P. 07000.
Tels: (5255) 5061-3875 (3867 al 3871)
Fax: (5255) 5061-3876
e-mail: eramirez@math.cinvestav.mx


I am a full professor of the Mathematics Department of the Cinvestav. I am also a managing editor of the Bulletin of the Mexican Mathematical Society. (Boletín de la Sociedad Matemática Mexicana)

Soy profesor e investigador titular en el Departamento de Matemáticas del Cinvestav. Soy también editor general del Boletín de la Sociedad Matemática Mexicana.

Research Interests/Areas de investigación

Several complex variables, hypercomplex analysis and operator theory / Varias variables complejas, análisis hipercomplejo y teoría de operadores.

Publications/Publicaciones

  1. Böttcher, A.; Grudsky, S.; Ramírez de Arellano, E. On the asymptotic behavior of the eigenvectors of large banded Toeplitz matrices. Math. Nachr. 279 (2006), No. 1-2, 121-129.
  2. Ramírez de Arellano, E.; Resendis O., L. F.; Tovar S., L. M. Zhao f(p,q,s) function spaces and harmonic majorants. Bol. Soc. Mat. Mexicana (3) 11 (2005), No. 2, 241-258.
  3. Ramírez de Arellano, E.; Reséndis O., L. F.; Tovar S., L. M. B_p, Q_p spaces and harmonic majorants. Advances in analysis, 121-137, World Sci. Publ., Hackensack, NJ (2005).
  4. Böttcher, A.; Grudsky, S. M.; Ramírez de Arellano, E. Approximating inverses of Toeplitz matrices by circulant matrices. Methods Appl. Anal. 11 (2004), No. 2, 211-220.
  5. Böttcher, Albrecht; Grudsky, Sergei M.; Ramírez de Arellano, Enrique. Algebras of Toeplitz operators with oscillating symbols. Rev. Mat. Iberoamericana 20 (2004), No. 3, 647-671.
  6. Karlovich, Y. I.; Ramírez de Arellano, E. Singular integral operators with fixed singularities on weighted Lebesgue spaces. Integral Equations and Operator Theory 48 (2004), No. 3, 331-363.
  7. Ramírez-Ortega, J.; Ramírez de Arellano, E.; Vasilevski, N. L. On the algebra generated by the Bergman projection and a shift operator II. Boletín de la Sociedad Matemática Mexicana (3) 10 (2004), No. 1, 105-117.
  8. Ramírez-Ortega, J.; Ramírez de Arellano, E.; Vasilevski, N. L. On the algebra generated by the Bergman projection and a shift operator I. Integral Equations and Operator Theory 46 (2003), No. 4, 455-471.
  9. Karapetyants, A. N.; Ramírez de Arellano, E. Boundedness of some convolution and twisted convolution operators. Operator Theory: Advances and Applications 142 (2003), 141-154.
  10. Karapetyants, A. N.; Ramírez de Arellano, E. A boundedness result for twisted convolution, Math. Nachrichten 250 (2003), 58-70.
  11. Grudsky, S. M.; Mikhalkovich, S. S.; Ramírez de Arellano, E. The Wiener-Hopf integral equation on a finite interval: asymptotic solution for large intervals. Proceedings of the International Workshop on Linear Algebra, Numerical Functional Analysis and Wavelet Analysis. Allied Publishers, Chenai, India. 2003.
  12. Karlovich, Y. I.; Ramírez de Arellano, E. A shift–invariant algebra of singular integral operators with oscillating coeffcients. Integral Equations and Operator Theory 39 (2001), No. 4, 441-474.
  13. Karapetyants, A. N.; Ramírez de Arellano, E. On the inversion of potential type operators with kernels having singularities in a sphere. Fract. Calc. Appl. Anal. 3 (2000), No. 2, 141-160.
  14. Complex Analysis and Related Topics. Edited by E. Ramírez de Arellano, M. V. Shapiro, L. M. Tovar and N. L. Vasilevski. Operator Theory: Advances and Applications 114. Birkhäuser Verlag, Basel. 2000. 296 pp. ISBN 3-7643-6228-6.
  15. Karapetyants, Alexey N.; Ramírez de Arellano, Enrique. Characterization of anisotropic Lizorkin-type mixed norm spaces generated by degenerate differential operators. Fract. Calc. Appl. Anal. 2 (1999), No. 2, 193-204.
  16. Gurevich, Yu G.; Kucherenko V. V.; Ramírez de Arellano, E. A problem with directional derivative in the theory of galvanomagnetic effects. Math. Notes 65 (1999), No. 4, 436-446.
  17. Ramírez de Arellano, Enrique; Vasilevski, Nikolai. Bargmann projection, three-valued functions and corresponding Toeplitz operators. Contemp. Math. 212 (1998), 185-196.
  18. Operator theory for complex and hypercomplex analysis. Proceedings of the International Conference held in Mexico City, December 12--17, 1994. Edited by E. Ramírez de Arellano, N. Salinas, M. V. Shapiro and N. L. Vasilevski. Contemporary Mathematics, 212. American Mathematical Society, Providence, RI, 1998. x+298 pp. ISBN: 0-8218-0677-7.
  19. Kisil, Vladimir V.; Ramírez de Arellano, Enrique. A functional model for quantum mechanics: unbounded operators. Math. Methods Appl. Sci. 20 (1997), No. 9, 745-757.
  20. Ramírez de Arellano, E.; Vasilevski, N. L. Toeplitz operators on the Fock space with presymbols discontinuous on a thick set. Math. Nachr. 180 (1996), 299-315.
  21. Vasilevski, N. L.; Ramírez de Arellano, E.; Shapiro, M. V. The classical Hurwitz problem and the associated theory of functions (Russian). Dokl. Akad. Nauk. 349 (1996), No. 5, 588-591.
  22. Ramírez de Arellano, Enrique; Vasilevski, Nikolai; Shapiro, Michael. Hurwitz analysis: basic concepts and connection with Clifford analysis. Banach Center Publ. 37 (1996), 297-305.
  23. Kisil, Vladimir V.; Ramírez de Arellano, Enrique. The Riesz-Clifford functional calculus for non-commuting operators and quantum field theory. Math. Methods Appl. Sci. 19 (1996), No. 8, 593-605.
  24. Kravchenko, V. V.; Ramírez de Arellano, E.; Shapiro, M. V. On integral representations and boundary properties of spinor fields. Math. Methods Appl. Sci. 19 (1996), No. 12, 977-989.
  25. Ramírez de Arellano, E.; Shapiro, M.; Vasilevski, N. The hyperholomorphic Bergman projector and its properties. Clifford algebras in analysis and related topics (Fayetteville, AR, 1993), 333--343, Stud. Adv. Math., CRC, Boca Raton, FL, 1996.
  26. Lawrynowicz, Julian; Ramírez de Arellano, Enrique. Anti-involutions, symmetric complex manifolds, and quantum spaces. Lecture Notes in Pure and Appl. Math. 173 (1996), 297-305.
  27. Ramírez de Arellano, E.; Vasilevski, N. L. Algebras of singular integral operators generated by three orthogonal projections. Integral Equations Operator Theory 25 (1996), No. 3, 277-288.
  28. Vasilevski, N.; Kisil, V.; Ramirez, E.; Trujilo, R. Toeplitz operators with discontinuous presymbols in the Fock space (Russian). Dokl. Akad. Nauk. 345 (1995), No. 2, 153-155.
  29. Ramírez de Arellano, Enrique; Shapiro, Michael V.; Vasilevski, Nikolai L. Two types of analysis associated to the notion of Hurwitz pairs. Adv. Appl. Clifford Algebras 4 (1994), Suppl. 1, 413-422.
  30. Lawrynowicz, Julian; Porter, R. Michael; Ramírez de Arellano, Enrique; Rembielinski, Jakub. On dualities generated by the generalised Hurwitz problem. Deformations of mathematical structures II (1994), 297-305.
  31. Ramírez de Arellano, Enrique; Shapiro, Michael V.; Vasilevski, Nikolai L. Hurwitz pairs and Clifford algebra representations. Fund. Theories Phys. 55 (1993), 297-305.
  32. Królikowski, W.; Ramírez de Arellano, E. Fueter-Hurwitz regular mappings and an integral representation. Fund. Theories Phys. 47 (1992), 297-305.
  33. Królikowski, Wieslaw; Ramírez de Arellano, Enrique. Polynomial solutions of the Fueter-Hurwitz equation. Contemp. Math. 137 (1992), 297-305.
  34. Lawrynowicz, Julian; Ramírez de Arellano, Enrique; Rembielinski, Jakub. The correspondence between type-reversing transformations of pseudo-Euclidean Hurwitz pairs and Clifford algebras. I, II. Bull. Soc. Sci. Lett. Lód'z 40 (1990), No. 1-10, 61-97, 99-129 (1991).
  35. Algebraic geometry and complex analysis. Proceedings of the workshop held in Pátzcuaro, August 10-14, 1987. Edited by E. Ramírez de Arellano. Lecture Notes in Mathematics, 1414. Springer-Verlag, Berlin-New York, 1989. vi+180 pp. ISBN: 3-540-52175-5.
  36. Topics in several complex variables. Proceedings of the workshop held in Mexico, August 15-19, 1983. Also contains lectures by M. Kuranishi given in Mexico City, 1982. Edited by E. Ramírez de Arellano and D. Sundararaman. Research Notes in Mathematics, 112. Pitman (Advanced Publishing Program), Boston, Mass.-London, 1985. iii+189 pp. ISBN: 0-273-08656-1.
  37. Ramírez de Arellano, Enrique. Ein Divisionsproblem und Randintegraldarstellungen in der komplexen Analysis (German). Math. Ann. 184 (1969/1970), 172-187.